La Tierra según la hipótesis de Gaia, es una fórmula realizada por James Lovelock y Lynn Margulis, la cual sostiene que todos los procesos tanto físicos como biológicos de la Tierra forman parte de un complejo sistema consciente, sensible y capaz de gestionarse por si mismo. En una palabra, el Planeta Tierra es un ser vivo que siente y se autorregula como cualquier ser humano. Lovelock provocó una sacudida en muchos científicos con una mente más lógica, sobre todo cuando Lovelock tenía fama de ser un científico con credenciales sólidas, conocido por ser el hombre que había diseñado los instrumentos de algunos experimentos para buscar vida en la superficie de Marte.
La hipótesis de Gaia es un conjunto de modelos científicos de la biosfera en el cual se postula que la vida fomenta y mantiene unas condiciones adecuadas para sí misma, afectando al entorno. Según la hipótesis de Gaia, la atmósfera y la parte superficial del planeta Tierra se comportan como un todo coherente donde la vida, sucomponente característico, se encarga de autorregular sus condiciones esenciales tales como la temperatura, composición química y salinidad en el caso de los océanos. Gaia se comportaría como un sistema auto-regulador (que tiende al equilibrio). La teoría fue ideada por el químico James Lovelock en 1969 (aunque publicada en 1979) siendo apoyada y extendida por la bióloga Lynn Margulis. Lovelock estaba trabajando en ella cuando se lo comentó al escritor William Golding, fue éste quien le sugirió que la denominase “Gaia”, diosa griega de la Tierra (Gaia, Gea o Gaya).
Origen de la hipótesis
Lovelock fue llamado por la NASA en 1965 para participar en el primer intento de descubrir la posible existencia de vida en Marte. Participó como asesor de un equipo cuyo objetivo principal era la búsqueda de métodos y sistemas que permitieran la detección de vida en Marte y en otros planetas. Uno de los problemas a resolver sería el encontrar los criterios que deberían seguirse para lograr detectar cualquier tipo de vida. A Lovelock le llamaron la atención las radicales diferencias que existían entre la Tierra y los dos planetas más próximos, fue la singularidad de las condiciones de la Tierra lo que le llevó a formular su primera hipótesis.
Fundamentos
Esta teoría se basa en la idea de que la biomasa autorregula las condiciones del planeta para hacer su entorno físico (especialmente temperatura y química atmosférica) más hospitalario con las especies que conforman la «vida». La hipótesis Gaia define esta «hospitalidad» como una completa homeostasis. Un modelo sencillo que suele usarse para ilustrar la hipótesis Gaia es la simulación del mundo de margaritas. Según la segunda ley de la termodinámica un sistema cerrado tiende a la máxima entropía. En el caso del planeta Tierra su atmósfera debería hallarse en equilibrio químico, todas las posibles reacciones químicas ya se habrían producido y su atmósfera se compondría mayoritariamente de CO2 (Se estimó que la atmósfera debería componerse de, aproximadamente, un 99% de CO2) sin apenas vestigios de oxigeno y nitrógeno. Según la teoría de Gaia, el que al día de hoy la atmósfera la compongan un 78% de nitrógeno, 21% de oxigeno y apenas un 0,03% de dióxido de carbono se debe a que la vida, con su actividad y su reproducción, mantiene estas condiciones que la hacen habitable para muchas clases de vida. Con anterioridad a la formulación de la Hipótesis de Gaia se suponía que La Tierra poseía las condiciones apropiadas para que la vida se diese en ella, y que esta vida se había limitado a adaptarse a las condiciones existentes, así como a los cambios que se producían en esas condiciones. La hipótesis de Gaia lo que propone es que dadas unas condiciones iniciales que hicieron posible el inicio de la vida en el planeta, ha sido la propia vida la que las ha ido modificando, y que por lo tanto las condiciones resultantes son consecuencia y responsabilidad de la vida que lo habita.
Para explicar cómo la vida puede mantener las condiciones químicas de Gaia, Margulis ha destacado la gran capacidad de los microorganismos para transformar gases que contienen nitrógeno, azufre y carbono.
Gaia, madre Tierra |
Hipótesis inicial de Lovelock
Lovelock definió Gaia como: una entidad compleja que implica a la biosfera, atmósfera, océanos y tierra; constituyendo en su totalidad un sistema cibernético o retroalimentado que busca un entorno físico y químico óptimo para la vida en el planeta. Con su hipótesis inicial, Lovelock afirmaba la existencia de un sistema de control global de la temperatura, composición atmosférica y salinidad oceánica. Sus argumentos eran:
• La temperatura global de la superficie de la Tierra ha permanecido constante, a pesar del incremento en la energía proporcionada por el Sol.
• La composición atmosférica permanece constante, aunque debería ser inestable.
• La salinidad del océano permanece constante.
Ejemplos: Valores de gases atmosféricos en diversos planetas:
• CO2: Marte 95%, Venus 98%, Tierra (sin vida) 98%, Tierra (con vida) 0.03%.
• O2: Marte 0,13%, Venus trazas, Tierra (sin vida) trazas, Tierra (con vida) 21%.
Nuevas mediciones podrían confirmar la hipótesis Gaia
Una novedosa herramienta de análisis del ciclo del azufre determinará si es o no cierto que nuestro planeta se autorregula, como cualquier otro ser vivo.
Según publica dicha Universidad en un comunicado la clave estaría en un elemento químico que se encuentra entre los 10 más abundantes del universo: el azufre.
Rastreando el ciclo del azufre
En los océanos, los organismos marinos producen un compuesto del azufre, el dimetilsulfuro, que es lo suficientemente estable como para resistir la oxidación del agua y que se produzca su transferencia al aire y a la superficie terrestre.
Es lo que se denomina el “ciclo del azufre”, un proceso que se desarrolla a través de la tierra, la atmósfera y los seres vivos marinos, y que juega un papel crucial tanto en el clima como en la salud de los organismos y de los ecosistemas.
De hecho, las emisiones de dimetilsulfuro son esenciales para la regulación del clima, a través de su transformación en aerosoles, que se cree influyen en el equilibrio de radiación térmica terrestre.
Lo que han hecho Harry Oduro, de la Universidad de Maryland, en colaboración con el geoquímico James Farquhar, y la bióloga marina Kathryn Val Alstyne, de la Western Washington University, es desarrollar una herramienta que posibilita el rastreo y la medición del sulfuro a lo largo de todo el ciclo del azufre: desde la metabolización de estos compuestos por parte de los organismos oceánicos hasta la atmósfera y la tierra.
Huellas isotópicas
Más concretamente, Oduro y sus colaboradores pueden medir por vez primera, gracias a esta herramienta, la composición isotópica del dimetilsulfuro y también de su precursor, el dimetilsulfoniopropionato.
Al igual que muchos otros elementos químicos, el azufre está compuesto de diferentes isótopos o átomos cuyos núcleos tienen una cantidad diferente de neutrones, y por lo tanto, difieren en masa.
Los isótopos de cualquier elemento, en este caso del azufre, se caracterizan por tener propiedades químicas idénticas, pero diferentes masa y propiedades nucleares.
Estas diferencias sutiles han hecho posible para los científicos establecer diferencias, en forma de huellas isotópicas, entre los distintos compuestos del azufre, producidos por las macroalgas (algas marinas multicelulares) y el fitoplancton, para poder rastrearlos.
Según explica Farquhar, en concreto, lo que se ha conseguido es idear la manera de aislar y medir la composición isotópica de estos dos compuestos del azufre, el dimetilsulfuro y el dimetilsulfoniopropionato.
En los océanos, los organismos marinos producen un compuesto del azufre, el dimetilsulfuro, que es lo suficientemente estable como para resistir la oxidación del agua y que se produzca su transferencia al aire y a la superficie terrestre.
Es lo que se denomina el “ciclo del azufre”, un proceso que se desarrolla a través de la tierra, la atmósfera y los seres vivos marinos, y que juega un papel crucial tanto en el clima como en la salud de los organismos y de los ecosistemas.
De hecho, las emisiones de dimetilsulfuro son esenciales para la regulación del clima, a través de su transformación en aerosoles, que se cree influyen en el equilibrio de radiación térmica terrestre.
Lo que han hecho Harry Oduro, de la Universidad de Maryland, en colaboración con el geoquímico James Farquhar, y la bióloga marina Kathryn Val Alstyne, de la Western Washington University, es desarrollar una herramienta que posibilita el rastreo y la medición del sulfuro a lo largo de todo el ciclo del azufre: desde la metabolización de estos compuestos por parte de los organismos oceánicos hasta la atmósfera y la tierra.
Huellas isotópicas
Más concretamente, Oduro y sus colaboradores pueden medir por vez primera, gracias a esta herramienta, la composición isotópica del dimetilsulfuro y también de su precursor, el dimetilsulfoniopropionato.
Al igual que muchos otros elementos químicos, el azufre está compuesto de diferentes isótopos o átomos cuyos núcleos tienen una cantidad diferente de neutrones, y por lo tanto, difieren en masa.
Los isótopos de cualquier elemento, en este caso del azufre, se caracterizan por tener propiedades químicas idénticas, pero diferentes masa y propiedades nucleares.
Estas diferencias sutiles han hecho posible para los científicos establecer diferencias, en forma de huellas isotópicas, entre los distintos compuestos del azufre, producidos por las macroalgas (algas marinas multicelulares) y el fitoplancton, para poder rastrearlos.
Según explica Farquhar, en concreto, lo que se ha conseguido es idear la manera de aislar y medir la composición isotópica de estos dos compuestos del azufre, el dimetilsulfuro y el dimetilsulfoniopropionato.
Cómo se autorregula Gaia
Los registros resultantes han revelado una variabilidad inesperada en una señal isotópica que parece estar relacionada con la manera en que el azufre es metabolizado, añade el investigador.
Además, el trabajo de Oduro ha establecido que cabe esperar encontrar variaciones en las huellas isotópicas del azufre de ambos compuestos en el océano, bajo diversas condiciones medioambientales y a partir de diferentes organismos.
Y también ha demostrado que las diferencias en la composición isotópica del dimetilsulfuro pueden ayudar a afinar las estimaciones de sus emisiones a la atmósfera y su ciclo en los océanos.
Por todo, la investigación ha demostrado que el uso de los isótopos para registrar el ciclo de los compuestos del azufre en las superficies oceánicas, así como el flujo del dimetilsulfuro a la atmósfera, servirá para responder a importantes cuestiones sobre el clima –vinculadas al ciclo de azufre- y a predecir mejor los cambios climáticos, asegura Farqhuar.
Asimismo, estas mediciones ayudarán a establecer mejor las conexiones entre las emisiones de dimetilsulfuro y los aerosoles de sulfato, y permitirá conocer la interacción entre el mundo marino, la atmósfera y la tierra, para concluir hasta qué punto se autorregulan y si es posible que la teoría Gaia sea cierta.
Los resultados de la presente investigación han aparecido detallados en la revista Proceedings of the National Academy of Sciences (PNAS), en la que se especifica que las mediciones fueron realizadas a partir de una especie concreta de fitoplancton (Prorocentrum minimum) y de cinco especies de macroalgas (Ulva lactuca, Ulva linza, Ulvaria obscura, Ulva prolifera, y Polysiphonia hendryi).
La respiración de la Tierra
En 2004, científicos de la Universidad de Hong Kong hicieron público otro descubrimiento que podría respaldar uno de los aspectos de la hipótesis Gaia, que señala que la Tierra vive algún proceso de respiración: los investigadores descubrieron que el litoral terrestre respira bajo el efecto de las mareas, originando la aspiración y expiración del aire y la humedad y afectando a las infraestructuras costeras.
Los registros resultantes han revelado una variabilidad inesperada en una señal isotópica que parece estar relacionada con la manera en que el azufre es metabolizado, añade el investigador.
Además, el trabajo de Oduro ha establecido que cabe esperar encontrar variaciones en las huellas isotópicas del azufre de ambos compuestos en el océano, bajo diversas condiciones medioambientales y a partir de diferentes organismos.
Y también ha demostrado que las diferencias en la composición isotópica del dimetilsulfuro pueden ayudar a afinar las estimaciones de sus emisiones a la atmósfera y su ciclo en los océanos.
Por todo, la investigación ha demostrado que el uso de los isótopos para registrar el ciclo de los compuestos del azufre en las superficies oceánicas, así como el flujo del dimetilsulfuro a la atmósfera, servirá para responder a importantes cuestiones sobre el clima –vinculadas al ciclo de azufre- y a predecir mejor los cambios climáticos, asegura Farqhuar.
Asimismo, estas mediciones ayudarán a establecer mejor las conexiones entre las emisiones de dimetilsulfuro y los aerosoles de sulfato, y permitirá conocer la interacción entre el mundo marino, la atmósfera y la tierra, para concluir hasta qué punto se autorregulan y si es posible que la teoría Gaia sea cierta.
Los resultados de la presente investigación han aparecido detallados en la revista Proceedings of the National Academy of Sciences (PNAS), en la que se especifica que las mediciones fueron realizadas a partir de una especie concreta de fitoplancton (Prorocentrum minimum) y de cinco especies de macroalgas (Ulva lactuca, Ulva linza, Ulvaria obscura, Ulva prolifera, y Polysiphonia hendryi).
La respiración de la Tierra
En 2004, científicos de la Universidad de Hong Kong hicieron público otro descubrimiento que podría respaldar uno de los aspectos de la hipótesis Gaia, que señala que la Tierra vive algún proceso de respiración: los investigadores descubrieron que el litoral terrestre respira bajo el efecto de las mareas, originando la aspiración y expiración del aire y la humedad y afectando a las infraestructuras costeras.
James Lovelock |
MAS EN EL FORO
¿VOTAMOS EL POST?
{[['', '']]}
¿QUIERES VER UNA ENTRADA AL AZAR? PUEDE QUE TE QUE GUSTE O PUEDE QUE NO.
0 comentarios :
Publicar un comentario
¡¡ Comentar no cuesta nada y suscribirse al Blog tampoco, es gratis !!
Nota: solo los miembros de este blog pueden publicar comentarios.